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ABSTRACT

Protein contact map prediction is useful for protein
folding rate prediction, model selection and 3D
structure prediction. Here we describe NNcon, a
fast and reliable contact map prediction server and
software. NNcon was ranked among the most accu-
rate residue contact predictors in the Eighth Critical
Assessment of Techniques for Protein Structure
Prediction (CASP8), 2008. Both NNcon server and
software are available at http://casp.rnet.missouri.
edu/nncon.html.

INTRODUCTION

Predicting residue contacts is an important problem in
protein structure prediction. Contact maps, a matrix rep-
resentation of protein residue–residue contacts within a
distance threshold, provide an avenue for predicting pro-
tein 3D structure (1,2). There have been several algorithms
developed to reconstruct protein 3D structure from an
accurate contact map using distance-based algorithms
developed for protein structure prediction and nuclear
magnetic resonance (NMR) structure determination (3–7).

Even though contact prediction is presumably as hard
as ab initio 3D structure prediction, it can be readily for-
mulated as a classification problem, which can be tackled
by knowledge-based reasoning methods, such as corre-
lated mutation (8–14) and machine learning (15–27).

As more and more evidence shows that sequence-based
contact predictions can be used to infer protein folding
rates, evaluate protein models (28), and improve 3D struc-
ture prediction (29), contact map prediction is becoming
increasingly important and useful. To date, however, only
a few contact prediction servers [e.g. SCRATCH, Distill,
SVMcon, SAM, RECON (30–34)] and a software package
(SVMcon) are publicly available. To fill the gap, we
describe a fast, state-of-the-art neural network-based con-
tact map predictor NNcon that was ranked among the best
methods in the Eighth Critical Assessment of Techniques
for Protein Structure Prediction (CASP8), 2008 (35).

HYBRID CONTACT PREDICTION METHODS

Weused 2D-RecursiveNeural Network (2D-RNN)models
to predict both general residue-residue contacts and specific
beta contacts (i.e. beta-residue pairs in beta sheets).

General contact prediction

2D-RNN is a 2D machine learning method designed to
map 2D input information into 2D output targets (36).
The basic architecture of 2D-RNN contact predictions is
illustrated in Figure 1.
The 2D-RNNs in NNcon are trained on a large data set

consisting of 482 proteins and validated on a data set of 48
proteins. The real contacts were calculated as those resi-
due pairs with C-a atoms within a set distance threshold.
Ten 2D-RNN models were trained in order to create an
ensemble of models that predict contacts. We trained two
sets of 2D-RNN to predict contacts at an 8 Å and 12 Å
threshold, respectively.

Beta-contact prediction

The general residue–residue contacts are defined based
on a standard distance threshold of 8 and 12 Å. To take
advantage of physiochemical constraints (i.e. hydrogen
bonds) in beta sheets, we use 2D-RNN to directly predict
beta-residue pairings within beta sheets (37). NNcon trea-
ted the prediction of inter-strand residue pairings as an
additional binary classification problem, and refined
these regions locally. The 2D-RNNs were trained and
validated on the data set using 10-fold cross-validation
on a large data set consisting of 916 chains and 2533
beta sheets (37). The ensemble of these 10 models is
used to make predictions.

Combination of general and specific contact maps

Since the specific beta-contact predictor models predict
beta contacts more accurately than the general contact
map predictor models, we combined the predictions
from these two methods for those proteins containing
beta sheets. If the probability of a beta-residue pairing
from the general contact model is less than that predicted
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by the beta-specific contact predictor, the general predic-
tion is replaced by the beta-specific prediction value. The
revised general contact map predictions are then finalized
as the final contact map.

IMPLEMENTATION OF WEB SERVER

Both the NNcon web server and executable are freely
available to all users at http://casp.rnet.missouri.edu/
nncon.html and there is no login requirement. The input
for the web server includes an e-mail address where the
results will be sent, a target name, and an unformatted
protein sequence. The e-mail output includes both a
main message and several attachments. The main message
includes the selected residue–residue contacts, in CASP
format, at an 8 Å threshold, with sequence separation
�6 and a predicted probability �0.1; and the average con-
tact order and the average contact number derived from
the predicted contact probability matrix at 8 Å. The
attachments include a contact map image file, the full-con-
tact probably matrix at 8 Å, and the full contact probabil-
ity matrix at 12 Å. Users can select contacts from these
probability matrices according to any probability
threshold.
The server can accept multiple submissions concurrently

through a task queue. NNcon predictions are much faster
than support vector machine contact map predictors, such
as SVMcon, which contain hundreds of thousands of sup-
port vectors. NNcon can make a prediction for a protein
of average size (250 residues) in just a few minutes. The
server can also make predictions for large proteins with up
to 1000 residues in under an hour.
A Linux version of the contact prediction software is

also available for download at the web site and the readme
file contains the necessary installation instructions. This
version of NNcon requires two input parameters at the
command prompt: the name of a FASTA file and an
output directory. The prediction results in the output
directory include name.cm8a and name.cm12a, which are
the predicted contact probability matrices for 8 and 12 Å,
respectively.

EVALUATION OF WEB SERVER

NNcon was blindly tested in the CASP8 data set. We first
evaluated NNcon against SVMcon, one of the top ranked
contact map predictors in CASP7, on 116 CASP8 protein
targets (Table 1). Both NNcon and SVMcon use pure ab
initio methods to predict contacts within a protein. Next,
we compared NNcon with all the CASP8 contact predic-
tors on the 11 ab initio CASP8 domains, as shown in
Table 2. All the contact predictions for these predictors
and the 3D structures of the protein targets were down-
loaded from http://predictioncenter.org/casp8/.

COMPARISON OF NNcon AND SVMcon

Both NNcon and SVMcon were evaluated on 116
CASP8 targets. For each target, the top L/5 predicted
contacts were selected, where L is the residue length of
the protein. Then we calculated prediction coverage (sen-
sitivity [TP/(TPþFN)]) and accuracy (specificity [TP/
(TPþFP)]) for sequence separation of at least 6 residues,
12 residues and 24 residues, respectively, where TP, FP,
TN and FN, are true positive, false positive, true negative
and false negative predictions, respectively. NNcon had
higher performance statistics than SVMcon in both cov-
erage and accuracy for all sequence separation distances
(Table 1). The sensitivities, overall, are lower than

Table 2. Multiple contact map predictors evaluated on 11 CASP8

ab initio domains

Method Acc6 Cov6 Acc12 Cov12 Acc24 Cov24

NNcon 0.68 0.11 0.51 0.09 0.18 0.05
SVMcon 0.68 0.09 0.39 0.09 0.18 0.05
SAM08_2stage 0.28 0.05 0.26 0.06 0.17 0.05
SAM06 0.26 0.04 0.24 0.05 0.16 0.06
Fang 0.44 0.07 0.31 0.06 0.16 0.05
MUprot 0.59 0.09 0.37 0.08 0.15 0.05
Distill 0.32 0.05 0.16 0.03 0.14 0.05
3Dpro 0.05 0.01 0.33 0.07 0.14 0.05
SAM08_server 0.24 0.04 0.21 0.05 0.13 0.05
SVMSEQ 0.56 0.09 0.34 0.07 0.13 0.05
Hamilton 0.08 0.01 0.12 0.02 0.12 0.02
Spine 0.09 0.01 0.09 0.02 0.07 0.02
Lee 0.1 0.01 0.09 0.02 0.07 0.02
Pairings 0.36 0.05 0.35 0.06 0.05 0.01

For each domain, select top L/5 predicted contacts ranked by contact
probabilities. Acc6, Acc12, Acc24 denote prediction accuracy (specifi-
city) at sequence separation �6, 12, 24 residues, respectively. Cov6,
Cov12, Cov24 denote prediction coverage (sensitivity) at sequence sep-
aration �6, 12, 24 residues, respectively.

Figure 1. The 2D-RNN architecture for contact prediction. For a pro-
tein sequence with length n, the input to a 2D-RNN is an n� n input
matrix and the output is an n� n probability matrix residue contacts.

Table 1. Results of NNcon and SVMcon on 116 CASP8 targets

Method Acc6 Cov6 Acc12 Cov12 Acc24 Cov24

NNcon (L/5) 0.58 0.07 0.51 0.06 0.31 0.05
SVMcon (L/5) 0.5 0.06 0.42 0.06 0.27 0.05

Acc6, Acc12, Acc24 denote prediction accuracy (specificity) at sequence
separation �6, 12, 24 residues, respectively. Cov6, Cov12, Cov24
denote prediction coverage (sensitivity) at sequence separation �6, 12,
24 residues, respectively.
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specificities in all predictions because only a small number
of predicted contacts (L/5) are selected.

Comparison with other predictors on CASP8 ab initio
domains

NNcon, as well as other CASP8 predictors, were evalu-
ated on 11 CASP ab initio domains and then compared.
The top L/5 predicted contacts were again used in the
calculations. As Table 2 shows, NNcon performed favor-
ably when compared with other predictors, especially at
sequence separations �12 residues.

A good CASP8 contact prediction example

Figure 2 shows the predictions from the NNcon server for
the target T0507. NNcon correctly identified key contacts
in the beta sheets which can be very useful for predicting
the final structure of the protein.

INFERENCE OF CONTACT ORDER AND
CONTACT NUMBER

For each of the 48 proteins in the test data set, the average
contact number and the average contact order of all the
residues were calculated, and then correlated with the
actual values. The actual (resp. predicted) contact
number for each residue at 8 Å threshold was calculated
as the total number of actual (resp. predicted) contacts
with sequence separation greater than five residues.

The actual (resp. predicted) contact order for each res-
idue is the sum of sequence separations of actual (resp.
predicted) contacts with sequence separation greater than
five residues, and then normalized by the protein sequence
length. The Pearson correlations between the average
actual and predicted contact number (0.85) and contact
order (0.65) were strong, indicating that NNcon can suc-
cessfully infer the actual average contact number and con-
tact order of each protein from the predicted contact map.

In the web server, the average contact number and order
for the entire query protein are reported.

CONCLUSION

We have described NNcon—a fast and reliable web server
and software for protein contact map prediction. NNcon
was ranked among the most accurate methods in the
CASP8 experiment, 2008. The contact map predicted by
NNcon can be used to estimate the contact order and
contact number of a protein. On average, a contact map
prediction can be made in under a few minutes on one
single-processor PC, making the method a valuable tool
in large-scale contact map predictions.
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